论文标题

$ \ frac {1} {| x-y |^{2d}} $ percolation模型的距离

Distances in $\frac{1}{|x-y|^{2d}}$ percolation models for all dimensions

论文作者

Bäumler, Johannes

论文摘要

我们在$ \ mathbb {z}^d $上研究所有尺寸$ d $的独立远程渗透,其中Vertices $ u $和$ v $与概率1连接,$ \ | u-v \ | _ | _ \ | _ \ infty = 1 $,并且概率是$ p(β,\ {u,v \})= 1- e^{ - β\ int_ {u++\ left [0,1 \ right)^d}^d} \ int_ {v+\ left [0,1 \ off [0,1 \ oright)^d} \ frac {1} \fracβ{\ | u-v \ | _2^{2d}} $ for $ \ | | u-v \ | _ \ | _ \ infty \ geq 2 $。令$ u \ in \ mathbb {z}^d $是$ \ | u \ | _ \ infty = n $的点。我们表明,在原点$ \ mathbf {0} $和$ u $和盒子$ \ {0,\ ldots,n \}^d $中,$ n \}^d $在$ n^{θ(β)$ 0 <1 $ $ 0 <umy u $的情况下,$ n \}^d $在其中$ n \}^d $之间,$ n \}^d $之间的图形距离$ d(\ mathbf {0},u),u)$在盒子$ \ {0,\ ldots,n \}^d $之间我们还表明,当两个顶点$ u,带有$ \ | u-v \ | _2> 1 $的两个顶点$ u,v $时,盒子的距离和直径具有相同的渐近生长。此外,我们确定了大$β$的$θ(β)$的渐近行为,并讨论了$ \ frac {d(\ mathbf {0},u)} {\ | U \ | _2^{θ(β(β)}} $的尾巴行为。

We study independent long-range percolation on $\mathbb{Z}^d$ for all dimensions $d$, where the vertices $u$ and $v$ are connected with probability 1 for $\|u-v\|_\infty=1$ and with probability $p(β,\{u,v\})=1-e^{-β\int_{u+\left[0,1\right)^d} \int_{v+\left[0,1\right)^d} \frac{1}{\|x-y\|_2^{2d}}d x d y } \approx \fracβ{\|u-v\|_2^{2d}}$ for $\|u-v\|_\infty \geq 2$. Let $u \in \mathbb{Z}^d$ be a point with $\|u\|_\infty=n$. We show that both the graph distance $D(\mathbf{0},u)$ between the origin $\mathbf{0}$ and $u$ and the diameter of the box $\{0 ,\ldots, n\}^d$ grow like $n^{θ(β)}$, where $0<θ(β) < 1$. We also show that the graph distance and the diameter of boxes have the same asymptotic growth when two vertices $u,v$ with $\|u-v\|_2 > 1$ are connected with a probability that is close enough to $p(β,\{u,v\})$. Furthermore, we determine the asymptotic behavior of $θ(β)$ for large $β$, and we discuss the tail behavior of $\frac{D(\mathbf{0},u)}{\|u\|_2^{θ(β)}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源