论文标题

秀丽隐杆线虫的神经信号传播地图集

Neural signal propagation atlas of C. elegans

论文作者

Randi, Francesco, Sharma, Anuj K., Dvali, Sophie, Leifer, Andrew M.

论文摘要

神经科学中的一个基本问题是了解网络的属性如何决定其功能。连接组学提供了一种预测神经系统功能的途径。为了明确测试,我们通过直接的光遗传学激活和同时进行全脑钙成像,系统地测量了线虫秀丽隐杆线虫的头部23,427对神经元中的信号传播。我们测量这些神经元之间信号传播的符号(兴奋性或抑制性),强度,时间特性和因果关系,以创建功能性地图集。我们发现信号传播与基于解剖结构的预测有所不同。使用突变体,我们表明解剖结构不可见的外鼻临界信号传导会导致这种差异。我们确定许多在秒或无时间尺度上的密集核依赖性信号传导的许多实例,这些信号通常通常在不存在直接有线连接的情况下,但在表达相关的神经肽和受体。我们提出,在这里释放的神经肽具有与经典神经递质的功能相似的功能。最后,我们测量的信号传播地图集比解剖结构更好地预测了自发活动的神经动力学。我们得出的结论是,突触和促发性信号传导都可以在短时标准上驱动神经动力学,并且诱发信号传播的测量对于解释神经功能至关重要。

A fundamental problem in neuroscience is understanding how a network's properties dictate its function. Connectomics provides one avenue to predict nervous system function. To test this explicitly, we systematically measure signal propagation in 23,427 pairs of neurons across the head of the nematode Caenorhabditis elegans by direct optogenetic activation and simultaneous whole-brain calcium imaging. We measure the sign (excitatory or inhibitory), strength, temporal properties, and causal direction of signal propagation between these neurons to create a functional atlas. We find that signal propagation differs from predictions based on anatomy. Using mutants, we show that extrasynaptic signaling not visible from anatomy contributes to this difference. We identify many instances of dense-core-vesicle dependent signaling on seconds-or-less timescales that evoke acute calcium transients often where no direct wired connection exists but where relevant neuropeptides and receptors are expressed. We propose that here extrasynaptically released neuropeptides serve a similar function as that of classical neurotransmitters. Finally, our measured signal propagation atlas better predicts neural dynamics of spontaneous activity than does anatomy. We conclude that both synaptic and extrasynaptic signaling drive neural dynamics on short timescales and that measurement of evoked signal propagation are critical for interpreting neural function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源