论文标题

LEAVITTT路径代数的分级结构被视为部分偏斜组环

The graded structure of Leavittt path algebras viewed as partial skew group rings

论文作者

Gonçalves, Daniel, Orozco, Laura, Pinedo, Héctor

论文摘要

令$ e $为有向图,$ \ mathbb k $是一个字段,$ \ mathbb f $是$ e $边缘的免费组。在这项工作中,我们将Leavitt Path代数与部分偏斜组环之间的同构赋予$ L _ {\ Mathbb K}(E)$的$ \ Mathbb f $ - 分类,并研究该分级的一些代数属性。更确切地说,我们表明划分清洁度,分级单位定型性和$ l _ {\ Mathbb k}(e)$的强度等级都是等效的。

Let $E$ be a directed graph, $\mathbb K$ be a field, and $\mathbb F$ be the free group on the edges of $E$. In this work, we use the isomorphism between Leavitt path algebras and partial skew group rings to endow $L_{\mathbb K}(E)$ with an $\mathbb F$-gradation and study some algebraic properties of this gradation. More precisely, we show that graded cleanness, graded unit-regularity, and strong gradeness of $L_{\mathbb K}(E)$ are all equivalent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源