论文标题
RDA:互惠分配的互惠分配对准可靠的半监督学习
RDA: Reciprocal Distribution Alignment for Robust Semi-supervised Learning
论文作者
论文摘要
在这项工作中,我们建议相互分布对齐(RDA)解决半监督学习(SSL),这是一个无参数的框架,独立于置信阈值,并与匹配的(常规)和不匹配的类别分布一起使用。分布不匹配是经常被忽略的,但更通用的SSL场景,在该场景中,标记的数据和未标记的数据不属于相同的类别分布。这可能导致该模型不会可靠地利用标记的数据并大大降低SSL方法的性能,而SSL方法的性能无法通过传统的分配一致性来挽救。在RDA中,我们对来自两个分类器的预测分布进行了相互对准,这些分类器预测了未标记的数据上的伪标签和互补标签。携带补充信息的这两个分布可用于相互正规化,而无需任何课堂分布。此外,我们从理论上显示RDA最大化输入输出互信息。我们的方法在各种不匹配的分布以及常规匹配的SSL设置的情况下,在SSL中实现了有希望的性能。我们的代码可在以下网址提供:https://github.com/njuyued/rda4robustssl。
In this work, we propose Reciprocal Distribution Alignment (RDA) to address semi-supervised learning (SSL), which is a hyperparameter-free framework that is independent of confidence threshold and works with both the matched (conventionally) and the mismatched class distributions. Distribution mismatch is an often overlooked but more general SSL scenario where the labeled and the unlabeled data do not fall into the identical class distribution. This may lead to the model not exploiting the labeled data reliably and drastically degrade the performance of SSL methods, which could not be rescued by the traditional distribution alignment. In RDA, we enforce a reciprocal alignment on the distributions of the predictions from two classifiers predicting pseudo-labels and complementary labels on the unlabeled data. These two distributions, carrying complementary information, could be utilized to regularize each other without any prior of class distribution. Moreover, we theoretically show that RDA maximizes the input-output mutual information. Our approach achieves promising performance in SSL under a variety of scenarios of mismatched distributions, as well as the conventional matched SSL setting. Our code is available at: https://github.com/NJUyued/RDA4RobustSSL.