论文标题
积极过渡的情感对话语料库,用于发展情绪感染的开放域聊天机器人
Positively transitioned sentiment dialogue corpus for developing emotion-affective open-domain chatbots
论文作者
论文摘要
在本文中,我们描述了一种数据增强方法,用于开发艾米丽(Emily),一种情绪影响的开放域聊天机器人。所提出的方法基于从多转话对话中明确建模的正转换(PT)情感数据。我们使用PT情感数据构建对话语料库,并将其发布供公众使用。通过使用产生的PT增强对话进行验证的对话模型,我们能够开发一种情感感染性的开放式聊天机器人,在各种情绪迷恋度量方面都表现出近距人的表现。我们对艾米丽(Emily)进行评估,以针对一些最先进的(SOTA)开放域聊天机器人,并显示拟议方法的有效性。该语料库公开可用。
In this paper, we describe a data enhancement method for developing Emily, an emotion-affective open-domain chatbot. The proposed method is based on explicitly modeling positively transitioned (PT) sentiment data from multi-turn dialogues. We construct a dialogue corpus with PT sentiment data and will release it for public use. By fine-tuning a pretrained dialogue model using the produced PT-enhanced dialogues, we are able to develop an emotion-affective open-domain chatbot exhibiting close-to-human performance in various emotion-affective metrics. We evaluate Emily against a few state-of-the-art (SOTA) open-domain chatbots and show the effectiveness of the proposed approach. The corpus is made publicly available.