论文标题
二阶集合兰格文方法用于采样和反问题
Second Order Ensemble Langevin Method for Sampling and Inverse Problems
论文作者
论文摘要
我们提出了一种基于二阶Langevin动力学的集合近似的采样方法。在辅助动量变量中,将对数目标密度附加在二次项中,并引入了阻尼驱动的汉密尔顿动力学。所得的随机微分方程对于Gibbs度量不变,而目标坐标的边际坐标。根据动力学定律,基于协方差的预处理不会改变此不变性属性,并且被引入以加速趋同对吉布斯度量。可以通过集合方法近似产生的平均场动力学。这导致无梯度和仿射不变的随机动力学系统。数值结果证明了其作为贝叶斯反问题中数值抽样器的基础的潜力。
We propose a sampling method based on an ensemble approximation of second order Langevin dynamics. The log target density is appended with a quadratic term in an auxiliary momentum variable and damped-driven Hamiltonian dynamics introduced; the resulting stochastic differential equation is invariant to the Gibbs measure, with marginal on the position coordinates given by the target. A preconditioner based on covariance under the law of the dynamics does not change this invariance property, and is introduced to accelerate convergence to the Gibbs measure. The resulting mean-field dynamics may be approximated by an ensemble method; this results in a gradient-free and affine-invariant stochastic dynamical system. Numerical results demonstrate its potential as the basis for a numerical sampler in Bayesian inverse problems.