论文标题
费米子谐波振荡器的密度矩阵
Density Matrix of the Fermionic Harmonic Oscillator
论文作者
论文摘要
路径积分技术用于得出费米子谐波振荡器的密度算子的可能表达。就Grassmann变量而言,费尔米电密度运算符可以写为:$ρ_F(β)= C^*(β)C(β)C(β)\ PM C^*(β)C(β)C(β)e^{ - βΩ} $,其中 +( - )意味着所有抗iperiodic( - )的总和。然后,我们的密度运算符用于获得通常的费米子分区函数,该函数描述了热平衡中的费米子振荡器。同样,根据周期性轨道$ c(β)= c(0)$,获得了分级的费米子分区函数。
The path integral technique is used to derive a possible expression for the density operator of the fermionic harmonic oscillator. In terms of the Grassmann variables, the fermionic density operator can be written as: $ρ_F (β)=c^* (β)c(β) \pm c^*(β)c(β)e^{-βω}$, where +(-) means that the sum over all antiperiodic (periodic) orbits. Our density operator is then used to obtain the usual fermionic partition function which describes the fermionic oscillator in thermal equilibrium. Also, according to the periodic orbit $c(β)=c(0)$, the graded fermionic partition function is obtained.