论文标题

Lotse:视觉分析指导的实用框架

Lotse: A Practical Framework for Guidance in Visual Analytics

论文作者

Sperrle, Fabian, Ceneda, Davide, El-Assady, Mennatallah

论文摘要

共同适应指导旨在通过多个理论框架提出,旨在在视觉分析中有效地进行人机合作。本文通过引入可访问的指导模型和随附的指导库,将理论映射到实践中,从而弥合了这种概念框架与实际实施之间的差距。我们根据设计模板和衍生策略为系统提供的指导构成模型。我们在名为LotSe的库中实例化该模型,该模型允许在定义文件中指定指导策略并从中生成运行代码。 Lotse是使用这种方法的第一个指导库。它支持创建可重复使用的指导策略,以通过指导改造现有应用程序,并促进创建一般指导策略模式。我们通过与VA研究人员的不同指导设计专业知识的VA研究人员进行了首次使用案例研究来证明其有效性,并发现他们能够有效并快速通过LotSe实施指导。此外,我们分析了框架的认知维度,以评估其表现力,并概述开放研究问题的摘要,以使指导实践与其复杂的理论保持一致。

Co-adaptive guidance aims to enable efficient human-machine collaboration in visual analytics, as proposed by multiple theoretical frameworks. This paper bridges the gap between such conceptual frameworks and practical implementation by introducing an accessible model of guidance and an accompanying guidance library, mapping theory into practice. We contribute a model of system-provided guidance based on design templates and derived strategies. We instantiate the model in a library called Lotse that allows specifying guidance strategies in definition files and generates running code from them. Lotse is the first guidance library using such an approach. It supports the creation of reusable guidance strategies to retrofit existing applications with guidance and fosters the creation of general guidance strategy patterns. We demonstrate its effectiveness through first-use case studies with VA researchers of varying guidance design expertise and find that they are able to effectively and quickly implement guidance with Lotse. Further, we analyze our framework's cognitive dimensions to evaluate its expressiveness and outline a summary of open research questions for aligning guidance practice with its intricate theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源