论文标题
一种基于L1的自动正则化方法,用于分析具有四极峰的FFC色散曲线
An automatic L1-based regularization method for the analysis of FFC dispersion profiles with quadrupolar peaks
论文作者
论文摘要
快速场循环核磁共振松弛计是一种非破坏性技术,可研究具有广泛应用(例如环境,生物学和食物)系统的分子动力学和结构。除了在特定领域的建模和应用有关此类技术的大量文献外,仍然缺乏针对相关参数识别问题的算法方法。我们认为,强大的算法方法将允许在几个应用领域对不同样品进行统一处理。在本文中,我们将参数识别问题建模为受约束的$ L_1 $登记的非线性最小二乘问题。遵循[分析化学2021 93(24)]中提出的方法,非线性最小二乘项术语通过将获得的弛豫谱分解为与1H-1H和1H-14N偶极 - 偶极 - 偶极相互作用相关的放松贡献,从而施加了数据一致性。数据拟合和基于L1的正则化项通过所谓的正则化参数平衡。 对于参数识别,我们提出了一种算法,该算法在每次迭代时都要计算正规化参数和模型参数。特别是,根据平衡原理更新了正则化参数值,并且通过通过非线性高斯 - seidel方法求解相应的$ L_1 $调节非线性最小二乘问题来获得模型参数值。我们分析了所提出的算法的收敛属性,并对合成和真实数据进行了广泛的测试。可应要求提供了实施算法的MATLAB软件,可向作者提供。
Fast Field-Cycling Nuclear Magnetic Resonance relaxometry is a non-destructive technique to investigate molecular dynamics and structure of systems having a wide range of applications such as environment, biology, and food. Besides a considerable amount of literature about modeling and application of such technique in specific areas, an algorithmic approach to the related parameter identification problem is still lacking. We believe that a robust algorithmic approach will allow a unified treatment of different samples in several application areas. In this paper, we model the parameters identification problem as a constrained $L_1$-regularized non-linear least squares problem. Following the approach proposed in [Analytical Chemistry 2021 93 (24)], the non-linear least squares term imposes data consistency by decomposing the acquired relaxation profiles into relaxation contributions associated with 1H-1H and 1H-14N dipole-dipole interactions. The data fitting and the L1-based regularization terms are balanced by the so-called regularization parameter. For the parameters identification, we propose an algorithm that computes, at each iteration, both the regularization parameter and the model parameters. In particular, the regularization parameter value is updated according to a Balancing Principle and the model parameters values are obtained by solving the corresponding $L_1$-regularized non-linear least squares problem by means of the non-linear Gauss-Seidel method. We analyse the convergence properties of the proposed algorithm and run extensive testing on synthetic and real data. A Matlab software, implementing the presented algorithm, is available upon request to the authors.