论文标题
与临界半径函数相关的操作员的混合不平等现象与Schrödinger类型操作员的应用
Mixed inequalities for operators associated to critical radius functions with applications to Schrödinger type operators
论文作者
论文摘要
我们为与临界半径函数相关的操作员获得加权混合不平等。我们考虑$(s,δ)$类型的SchrödingerCalderón-Zygmund运营商,价格为$ 1 <s \ leq \ infty $和$ 0<δ\ leq 1 $。我们还为相关的最大运算符提供了相同类型的估计。作为一种应用,我们获得了Schrödinger型奇异积分的多种混合不平等。 据我们所知,这些结果是Schrödinger设置中混合不平等的第一种方法。
We obtain weighted mixed inequalities for operators associated to a critical radius function. We consider Schrödinger Calderón-Zygmund operators of $(s,δ)$ type, for $1<s\leq \infty$ and $0<δ\leq 1$. We also give estimates of the same type for the associated maximal operators. As an application, we obtain a wide variety of mixed inequalities for Schrödinger type singular integrals. As far as we know, these results are a first approach of mixed inequalities in the Schrödinger setting.