论文标题

平滑高斯字段级的无界组件的独特性

Uniqueness of unbounded component for level sets of smooth Gaussian fields

论文作者

Severo, Franco

论文摘要

对于$ \ mathbb {r}^d $上的一个固定连续的高斯田地$ f $,包括bargmann-fock和cauchy田地,我们证明,最多有一个无限的连接组件在级别集合$ \ \ \ \ \ ell \ ell \} $(exculse $ \ eell)$ \ e \ eell for \ eell for \ ge \ e el for \ eell(级$ \ ell \ in \ mathbb {r} $,从而证明了杜米尼尔·孔宾(Duminil-Copin),里维拉(Rivera),罗德里格斯(Rodriguez)和瓦内维尔(Vanneuville)提出的猜想。由于所考虑的田地通常非常僵化(例如〜肯定是肯定的),因此没有可用的有限能量属性,并且证明唯一性的经典方法很难实施。我们使用基于Cameron-Martin定理的软移参数绕过了这一难度。

For a large family of stationary continuous Gaussian fields $f$ on $\mathbb{R}^d$, including the Bargmann-Fock and Cauchy fields, we prove that there exists at most one unbounded connected component in the level set $\{f=\ell\}$ (as well as in the excursion set $\{f\geq\ell\}$) almost surely for every level $\ell\in \mathbb{R}$, thus proving a conjecture proposed by Duminil-Copin, Rivera, Rodriguez & Vanneuville. As the fields considered are typically very rigid (e.g.~analytic almost surely), there is no sort of finite energy property available and the classical approaches to prove uniqueness become difficult to implement. We bypass this difficulty using a soft shift argument based on the Cameron-Martin theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源