论文标题
神经体系结构搜索作为多目标优化基准:问题制定和绩效评估
Neural Architecture Search as Multiobjective Optimization Benchmarks: Problem Formulation and Performance Assessment
论文作者
论文摘要
网络体系结构设计的持续进步导致了各种具有挑战性的计算机视觉任务的深入学习取得的显着成就。同时,神经体系结构搜索(NAS)的开发提供了有希望的方法来自动化网络体系结构的设计,以降低预测错误。最近,考虑到多个设计标准的网络体系结构的新兴应用程序方案提高了更高的需求:参数/浮点操作的数量以及推理延迟等。从优化的角度来看,涉及多个设计标准的NAS任务是本质上多目标优化问题。因此,采用进化的多目标优化(EMO)算法是合理的。尽管如此,仍然存在明显的差距,限制了沿这条途径的相关研究:一方面,从优化的角度出发,缺乏NAS任务的一般问题。另一方面,在NAS任务上对EMO算法进行基准评估面临挑战。弥合差距:(i)我们将NAS任务提出为一般的多目标优化问题,并从优化的角度分析复杂特征; (ii)我们提出了一条被称为$ \ texttt {evoxbench} $的端到端管道,以生成Emo算法的基准测试问题以有效运行 - 而无需GPU或Pytorch/pytorch/tensorflow; (iii)我们全面涵盖了两个数据集,七个搜索空间和三个硬件设备,最多涉及八个目标。基于上述内容,我们使用六种代表性的EMO算法验证了所提出的测试套件,并提供了一些经验分析。 $ \ texttt {evoxBench} $的代码可从$ \ href {https://github.com/emi-group/evoxbench} {\ rm {tery}} $。
The ongoing advancements in network architecture design have led to remarkable achievements in deep learning across various challenging computer vision tasks. Meanwhile, the development of neural architecture search (NAS) has provided promising approaches to automating the design of network architectures for lower prediction error. Recently, the emerging application scenarios of deep learning have raised higher demands for network architectures considering multiple design criteria: number of parameters/floating-point operations, and inference latency, among others. From an optimization point of view, the NAS tasks involving multiple design criteria are intrinsically multiobjective optimization problems; hence, it is reasonable to adopt evolutionary multiobjective optimization (EMO) algorithms for tackling them. Nonetheless, there is still a clear gap confining the related research along this pathway: on the one hand, there is a lack of a general problem formulation of NAS tasks from an optimization point of view; on the other hand, there are challenges in conducting benchmark assessments of EMO algorithms on NAS tasks. To bridge the gap: (i) we formulate NAS tasks into general multi-objective optimization problems and analyze the complex characteristics from an optimization point of view; (ii) we present an end-to-end pipeline, dubbed $\texttt{EvoXBench}$, to generate benchmark test problems for EMO algorithms to run efficiently -- without the requirement of GPUs or Pytorch/Tensorflow; (iii) we instantiate two test suites comprehensively covering two datasets, seven search spaces, and three hardware devices, involving up to eight objectives. Based on the above, we validate the proposed test suites using six representative EMO algorithms and provide some empirical analyses. The code of $\texttt{EvoXBench}$ is available from $\href{https://github.com/EMI-Group/EvoXBench}{\rm{here}}$.