论文标题
喜悦:使用多分辨率图像对银河系寄主的深度学习识别
DELIGHT: Deep Learning Identification of Galaxy Hosts of Transients using Multi-resolution Images
论文作者
论文摘要
我们提出了瞬态星系寄主的喜悦或深度学习识别,这是一种新算法,旨在自动和实时识别静脉外瞬变的宿主星系。所提出的算法接收到以瞬态候选者位置为中心的输入紧凑,多分辨率图像,并输出二维偏移量,这些偏移量向量将瞬态与其预测主机的中心连接起来。多分辨率输入由一组具有相同数量的像素的图像组成,但逐渐更大的像素大小和视野。 Alerce Broker团队在视觉上识别的\ Nsample星系样本用于培训卷积神经网络回归模型。我们表明,这种方法能够正确地识别相对较大的($ 10 \ arcsec <r <60 \ arcsec $)和小($ r \ le \ le 10 \ arcsec $)明显的尺寸主机星系(32 kb)(32 kb),而不是具有大的单分辨率图像(920 kb)。所提出的方法在恢复该位置方面的灾难性错误较少,并且比其他最先进的方法更完整,并且恢复了交叉匹配的红移的污染($ <0.86 \%$)。如果多分辨率输入图像提供的更有效的表示形式可以实时识别瞬态宿主星系,如果在新一代大型ETENDUE望远镜(例如Vera C. Rubin天文台)的警报流中采用。
We present DELIGHT, or Deep Learning Identification of Galaxy Hosts of Transients, a new algorithm designed to automatically and in real-time identify the host galaxies of extragalactic transients. The proposed algorithm receives as input compact, multi-resolution images centered at the position of a transient candidate and outputs two-dimensional offset vectors that connect the transient with the center of its predicted host. The multi-resolution input consists of a set of images with the same number of pixels, but with progressively larger pixel sizes and fields of view. A sample of \nSample galaxies visually identified by the ALeRCE broker team was used to train a convolutional neural network regression model. We show that this method is able to correctly identify both relatively large ($10\arcsec < r < 60\arcsec$) and small ($r \le 10\arcsec$) apparent size host galaxies using much less information (32 kB) than with a large, single-resolution image (920 kB). The proposed method has fewer catastrophic errors in recovering the position and is more complete and has less contamination ($< 0.86\%$) recovering the cross-matched redshift than other state-of-the-art methods. The more efficient representation provided by multi-resolution input images could allow for the identification of transient host galaxies in real-time, if adopted in alert streams from new generation of large etendue telescopes such as the Vera C. Rubin Observatory.