论文标题

凝视估计方法使用深度差残留网络

Gaze Estimation Approach Using Deep Differential Residual Network

论文作者

Huang, Longzhao, Li, Yujie, Wang, Xu, Wang, Haoyu, Bouridane, Ahmed, Chaddad, Ahmad

论文摘要

凝视估计是一种确定一个人在鉴于该人的脸上看待的方法,是理解人类意图的宝贵线索。与其他计算机视觉领域相似,深度学习(DL)方法在凝视估计域中获得了认可。但是,凝视估计域中仍然存在凝视校准问题,从而阻止了现有方法进一步改善性能。一个有效的解决方案是直接预测两只人眼的差异信息,例如差异网络(DIFF-NN)。但是,仅使用一个推理图像时,该解决方案会导致准确性丧失。我们提出了一个差异残差模型(DRNET)与新的损失函数相结合,以利用两个眼睛图像的差异信息。我们将差异信息视为辅助信息。我们主要使用两个公共数据集(1)mpiigaze和(2)Eyediap评估了提出的模型(DRNET)。仅考虑眼睛功能,DRNET的表现分别超过了最先进的目光估计方法,分别使用mpiigaze和Eyediap数据集,$ Angular-Error $ 4.57和6.14。此外,实验结果还表明,DRNET对噪声图像非常强大。

Gaze estimation, which is a method to determine where a person is looking at given the person's full face, is a valuable clue for understanding human intention. Similarly to other domains of computer vision, deep learning (DL) methods have gained recognition in the gaze estimation domain. However, there are still gaze calibration problems in the gaze estimation domain, thus preventing existing methods from further improving the performances. An effective solution is to directly predict the difference information of two human eyes, such as the differential network (Diff-Nn). However, this solution results in a loss of accuracy when using only one inference image. We propose a differential residual model (DRNet) combined with a new loss function to make use of the difference information of two eye images. We treat the difference information as auxiliary information. We assess the proposed model (DRNet) mainly using two public datasets (1) MpiiGaze and (2) Eyediap. Considering only the eye features, DRNet outperforms the state-of-the-art gaze estimation methods with $angular-error$ of 4.57 and 6.14 using MpiiGaze and Eyediap datasets, respectively. Furthermore, the experimental results also demonstrate that DRNet is extremely robust to noise images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源