论文标题
具有AREPO的一般相对论运动网格流体动力学模拟,并应用于中子星星合并
General relativistic moving-mesh hydrodynamics simulations with AREPO and applications to neutron star mergers
论文作者
论文摘要
我们在“移动网格”代码中实施一般相对论的流体动力学。我们还采用了使用保形扁平度近似的爱因斯坦磁场方程的求解器。通过使用固定的度量或动力学时空来发展孤立的静态中子星来验证实现。在这两种测试中,径向振荡模式的频率与独立计算的频率匹配。我们运行了中子星合并的第一个移动网格模拟。该仿真包括一种适应性提炼或脱富菲细胞的方案,从而动态调整局部分辨率。一般的动力学与中子星合并的独立平滑颗粒流体动力学和静态网状模拟一致。在粗糙的比较时,我们发现动力学特征之类的功能诸如后双核结构或准主振荡模式持续持续较长的时间尺度,可能反映了我们方法的数值较低的扩散率。同样,合并后重力波发射显示与其他代码模拟中观察到的特征相同。特别是,发现合并后阶段的主要频率与同一二进制系统的独立结果非常吻合,而相比之下,合并后引力波信号的幅度降低了,即合并后的振荡较小。在移动网格中,成功实施一般相对论的流体动力学AREPO代码,包括动态的时空演化,为模拟天体物理学中的一般相对论问题提供了一种新的新工具。
We implement general relativistic hydrodynamics in the moving-mesh code AREPO. We also couple a solver for the Einstein field equations employing the conformal flatness approximation. The implementation is validated by evolving isolated static neutron stars using a fixed metric or a dynamical spacetime. In both tests the frequencies of the radial oscillation mode match those of independent calculations. We run the first moving-mesh simulation of a neutron star merger. The simulation includes a scheme to adaptively refine or derefine cells and thereby adjusting the local resolution dynamically. The general dynamics are in agreement with independent smoothed particle hydrodynamics and static-mesh simulations of neutron star mergers. Coarsely comparing, we find that dynamical features like the post-merger double-core structure or the quasi-radial oscillation mode persist on longer time scales, possibly reflecting a low numerical diffusivity of our method. Similarly, the post-merger gravitational wave emission shows the same features as observed in simulations with other codes. In particular, the main frequency of the post-merger phase is found to be in good agreement with independent results for the same binary system, while, in comparison, the amplitude of the post-merger gravitational wave signal falls off slower, i.e. the post-merger oscillations are less damped. The successful implementation of general relativistic hydrodynamics in the moving-mesh AREPO code, including a dynamical spacetime evolution, provides a fundamentally new tool to simulate general relativistic problems in astrophysics.