论文标题

不确定的贝叶斯网络:从不完整的数据中学习

Uncertain Bayesian Networks: Learning from Incomplete Data

论文作者

Hougen, Conrad D., Kaplan, Lance M., Cerutti, Federico, Hero III, Alfred O.

论文摘要

当历史数据受到限制时,与贝叶斯网络节点相关的条件概率是不确定的,可以在经验上估算。二阶估计方法为估计概率和量化这些估计值的不确定性提供了一个框架。我们将这些案例称为Uncer Tain或二阶贝叶斯网络。当完成此类数据完成时,即每个实例化都观察到所有变量值时,已知有条件的概率是差异分布的。本文通过不完整的数据来了解其参数(即条件概率)的分布,从而改善了处理不确定的贝叶斯网络的当前最新方法。我们通过各种查询的置信界的所需和经验得出的强度来广泛评估各种方法,以学习参数的后验。

When the historical data are limited, the conditional probabilities associated with the nodes of Bayesian networks are uncertain and can be empirically estimated. Second order estimation methods provide a framework for both estimating the probabilities and quantifying the uncertainty in these estimates. We refer to these cases as uncer tain or second-order Bayesian networks. When such data are complete, i.e., all variable values are observed for each instantiation, the conditional probabilities are known to be Dirichlet-distributed. This paper improves the current state-of-the-art approaches for handling uncertain Bayesian networks by enabling them to learn distributions for their parameters, i.e., conditional probabilities, with incomplete data. We extensively evaluate various methods to learn the posterior of the parameters through the desired and empirically derived strength of confidence bounds for various queries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源