论文标题
关于纳扎罗夫 - 索丁常数的普遍性
On the universality of the Nazarov-Sodin constant
论文作者
论文摘要
我们研究了两个维球上的非高斯随机球形谐波的连接组件的数量$ \ mathbb {s}^2 $。我们证明,只要有有限的第二刻,就会对节点域计数的期望与系数的分布无关。
We study the number of connected components of non-Gaussian random spherical harmonics on the two dimensional sphere $\mathbb{S}^2$. We prove that the expectation of the nodal domains count is independent of the distribution of the coefficients provided it has a finite second moment.