论文标题
fMRI-S4:使用1D卷积和状态空间模型学习短期和远程动态FMRI依赖性
fMRI-S4: learning short- and long-range dynamic fMRI dependencies using 1D Convolutions and State Space Models
论文作者
论文摘要
静息状态脑功能活性对非成像表型的单个受试者映射是神经影像学的主要目标。当今采用的绝大多数学习方法都依赖于静态表示或短期时间相关性。这与动态性的大脑活动性质不符,并且表现出短期和长期依赖性。此外,在单个任务/数据集上已经开发并验证了新的复杂深度学习方法。这些模型在研究不同目标的研究中的应用通常需要详尽的超参数搜索,模型工程以及反复试验,以通过更简单的线性模型获得竞争结果。反过来,这限制了他们在迅速发展的研究领域中的采用和阻碍公平的基准测试。为此,我们提出了fMRI-S4;从静止状态功能磁共振成像扫描的时间库中分类表型和精神疾病的多功能深度学习模型。 fMRI-S4使用1D卷积和最近引入的状态空间模型S4捕获信号中的短距离和长范围时间依赖性。所提出的体系结构在任务/数据集中轻巧,样品效率和健壮。我们在三个多站点RS-FMRI数据集中验证了fMRI-S4诊断重大抑郁症(MDD),自闭症谱系障碍(ASD)和性别分类的任务。我们证明fMRI-S4可以在所有三个任务上均优于现有方法,并且可以作为插件和游戏模型进行培训,而无需为每种设置进行特殊的超级参数调整
Single-subject mapping of resting-state brain functional activity to non-imaging phenotypes is a major goal of neuroimaging. The large majority of learning approaches applied today rely either on static representations or on short-term temporal correlations. This is at odds with the nature of brain activity which is dynamic and exhibit both short- and long-range dependencies. Further, new sophisticated deep learning approaches have been developed and validated on single tasks/datasets. The application of these models for the study of a different targets typically require exhaustive hyperparameter search, model engineering and trial and error to obtain competitive results with simpler linear models. This in turn limit their adoption and hinder fair benchmarking in a rapidly developing area of research. To this end, we propose fMRI-S4; a versatile deep learning model for the classification of phenotypes and psychiatric disorders from the timecourses of resting-state functional magnetic resonance imaging scans. fMRI-S4 capture short- and long- range temporal dependencies in the signal using 1D convolutions and the recently introduced state-space models S4. The proposed architecture is lightweight, sample-efficient and robust across tasks/datasets. We validate fMRI-S4 on the tasks of diagnosing major depressive disorder (MDD), autism spectrum disorder (ASD) and sex classifcation on three multi-site rs-fMRI datasets. We show that fMRI-S4 can outperform existing methods on all three tasks and can be trained as a plug&play model without special hyperpararameter tuning for each setting