论文标题
疾病因果途径分析和决策支持的城市人口健康观测站:基本可解释的人工智能模型
An Urban Population Health Observatory for Disease Causal Pathway Analysis and Decision Support: Underlying Explainable Artificial Intelligence Model
论文作者
论文摘要
这项研究试图(1)通过合并语义层来扩大我们现有的城市人口健康观测站(Upho)系统; (2)凝聚力使用机器学习和语义/逻辑推理来提供可衡量的证据并检测导致不良健康结果的途径; (3)提供临床用例场景和设计案例研究,以识别与肥胖症患病率相关的健康的社会环境决定因素,(4)设计仪表板,该仪表板在肥胖症监视的背景下使用提供的场景证明了在肥胖症监视的情况下使用了upho。系统设计包括一个知识图的生成组件,该组件可提供来自感兴趣的相关领域的上下文知识。该系统使用现有本体学的概念,属性和公理来利用语义。此外,我们使用了公共可用的美国疾病控制和预防中心500个城市数据集来执行多元分析。采用机器学习和语义/逻辑推理的凝聚力方法揭示了导致疾病的途径。在这项研究中,我们介绍了仪表板的2个临床病例场景和概念验证原型设计,该设计提供了警告,建议和解释,并在肥胖监测,治疗和预防的背景下证明了Upho的使用。在使用支持向量回归机器学习模型探索案例方案的同时,我们发现贫困,缺乏体育锻炼,教育和失业是田纳西州孟菲斯肥胖的最重要的预测变量。 Upho的应用可以帮助减少健康差异并改善城市人口健康。扩展的Upho功能包含了更多可解释的知识,以增强医生,研究人员和卫生官员在患者和社区层面的明智决策。
This study sought to (1) expand our existing Urban Population Health Observatory (UPHO) system by incorporating a semantics layer; (2) cohesively employ machine learning and semantic/logical inference to provide measurable evidence and detect pathways leading to undesirable health outcomes; (3) provide clinical use case scenarios and design case studies to identify socioenvironmental determinants of health associated with the prevalence of obesity, and (4) design a dashboard that demonstrates the use of UPHO in the context of obesity surveillance using the provided scenarios. The system design includes a knowledge graph generation component that provides contextual knowledge from relevant domains of interest. This system leverages semantics using concepts, properties, and axioms from existing ontologies. In addition, we used the publicly available US Centers for Disease Control and Prevention 500 Cities data set to perform multivariate analysis. A cohesive approach that employs machine learning and semantic/logical inference reveals pathways leading to diseases. In this study, we present 2 clinical case scenarios and a proof-of-concept prototype design of a dashboard that provides warnings, recommendations, and explanations and demonstrates the use of UPHO in the context of obesity surveillance, treatment, and prevention. While exploring the case scenarios using a support vector regression machine learning model, we found that poverty, lack of physical activity, education, and unemployment were the most important predictive variables that contribute to obesity in Memphis, TN. The application of UPHO could help reduce health disparities and improve urban population health. The expanded UPHO feature incorporates an additional level of interpretable knowledge to enhance physicians, researchers, and health officials' informed decision-making at both patient and community levels.