论文标题
retour surl'Arithmétiquedes de de deux Quadriques,avec un附录PAR A. Kuznestov
Retour sur l'arithmétique des intersections de deux quadriques, avec un appendice par A. Kuznestov
论文作者
论文摘要
Lichtebaum证明,在$ P $ ADIC领域的曲线曲线的指数和周期是一致的。萨尔伯格(Salberger)证明,HASSE原理将在一个数字字段上的两个四边形$ x \ subset p^n $的平滑完整交点(如果包含圆锥)上,如果$ n \ geq 5 $。在这两个结果的基础上,我们扩展了Creutz和Viray(2021)的最新结果,该结果对两个四边形的相互作用的存在,超过$ p $ adadic领域和数字字段。然后,我们恢复了Heath-Brown的定理(2018年),即Hasse原理在$ p^7 $中的两个四边形的平滑完整交集中持有。我们还提供了Iyer和Parimala定理(2022)的替代证明,以$ n = 5 $。
Lichtenbaum proved that index and period coincide for a curve of genus one over a $p$-adic field. Salberger proved that the Hasse principle holds for a smooth complete intersection of two quadrics $X \subset P^n$ over a number field, if it contains a conic and if $n\geq 5$. Building upon these two results, we extend recent results of Creutz and Viray (2021) on the existence of a quadratic point on intersections of two quadrics over $p$-adic fields and number fields. We then recover Heath-Brown's theorem (2018) that the Hasse principle holds for smooth complete intersections of two quadrics in $P^7$. We also give an alternate proof of a theorem of Iyer and Parimala (2022) on the local-global principle in the case $n=5$.