论文标题
$ p $ -Navier-Stokes系统的本地不连续的Galerkin近似,第二部分:速度的收敛速率
A Local Discontinuous Galerkin approximation for the $p$-Navier-Stokes system, Part II: Convergence rates for the velocity
论文作者
论文摘要
在本文中,我们证明了本地不连续的Galerkin(LDG)近似的收敛速度,该近似是在本文的第一部分中提出的,用于$ p $ -navier-Stokes类型的系统和$ P $ - Stokes类型,$ p \ in(2,\ infty)$。收敛速率对于线性ANSATZ函数是最佳的。结果由数值实验支持。
In the present paper, we prove convergence rates for the Local Discontinuous Galerkin (LDG) approximation, proposed in Part I of the paper, for systems of $p$-Navier-Stokes type and $p$-Stokes type with $p\in (2,\infty)$. The convergence rates are optimal for linear ansatz functions. The results are supported by numerical experiments.