论文标题
图像质量评估与梯度暹罗网络
Image Quality Assessment with Gradient Siamese Network
论文作者
论文摘要
在这项工作中,我们介绍了梯度暹罗网络(GSN)进行图像质量评估。所提出的方法熟练地捕获完整参考图像质量评估(IQA)任务中扭曲的图像和参考图像之间的梯度特征。我们利用中央微分卷积获得图像对中隐藏的语义特征和细节差异。此外,空间注意力指导网络专注于与图像细节相关的区域。对于网络提取的低级,中级和高级功能,我们创新设计了一种多级融合方法,以提高功能利用率的效率。除了常见的均方误差监督外,我们还进一步考虑了批处理样本之间的相对距离,并成功地将KL差异丢失应用于图像质量评估任务。我们在几个公开可用的数据集上试验了提出的算法GSN,并证明了其出色的性能。我们的网络赢得了NTIRE 2022感知图像质量评估挑战赛1的第二名。
In this work, we introduce Gradient Siamese Network (GSN) for image quality assessment. The proposed method is skilled in capturing the gradient features between distorted images and reference images in full-reference image quality assessment(IQA) task. We utilize Central Differential Convolution to obtain both semantic features and detail difference hidden in image pair. Furthermore, spatial attention guides the network to concentrate on regions related to image detail. For the low-level, mid-level and high-level features extracted by the network, we innovatively design a multi-level fusion method to improve the efficiency of feature utilization. In addition to the common mean square error supervision, we further consider the relative distance among batch samples and successfully apply KL divergence loss to the image quality assessment task. We experimented the proposed algorithm GSN on several publicly available datasets and proved its superior performance. Our network won the second place in NTIRE 2022 Perceptual Image Quality Assessment Challenge track 1 Full-Reference.