论文标题

工业金属物体数据集

Dataset of Industrial Metal Objects

论文作者

De Roovere, Peter, Moonen, Steven, Michiels, Nick, Wyffels, Francis

论文摘要

我们介绍了工业金属物体的多样化数据集。这些对象是对称的,无纹理的和高度反射的,导致在现有数据集中未捕获的具有挑战性的条件。我们的数据集包含具有6D对象姿势标签的现实世界和合成多视图RGB图像。现实世界数据是通过记录具有不同对象形状,材料,载体,组成和照明条件的场景的多视图图像获得的。这将产生超过30,000张图像,并使用新的公共工具准确标记。综合数据是通过仔细模拟现实世界条件并以受控和现实的方式改变它们来获得的。这导致超过500,000张合成图像。合成数据和现实世界数据与受控变化之间的密切对应关系将有助于SIM到现实研究。我们的数据集的规模和挑战性的性质将有助于研究涉及反射材料的各种计算机视觉任务。数据集和随附的资源可在项目网站https://pderoovere.github.io/dimo上提供。

We present a diverse dataset of industrial metal objects. These objects are symmetric, textureless and highly reflective, leading to challenging conditions not captured in existing datasets. Our dataset contains both real-world and synthetic multi-view RGB images with 6D object pose labels. Real-world data is obtained by recording multi-view images of scenes with varying object shapes, materials, carriers, compositions and lighting conditions. This results in over 30,000 images, accurately labelled using a new public tool. Synthetic data is obtained by carefully simulating real-world conditions and varying them in a controlled and realistic way. This leads to over 500,000 synthetic images. The close correspondence between synthetic and real-world data, and controlled variations, will facilitate sim-to-real research. Our dataset's size and challenging nature will facilitate research on various computer vision tasks involving reflective materials. The dataset and accompanying resources are made available on the project website at https://pderoovere.github.io/dimo.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源