论文标题

使用深神经网络对热界面材料的快速流动行为建模

Rapid Flow Behavior Modeling of Thermal Interface Materials Using Deep Neural Networks

论文作者

Baeuerle, Simon, Gebhardt, Marius, Barth, Jonas, Steimer, Andreas, Mikut, Ralf

论文摘要

热界面材料(TIM)广泛用于电子包装中。增加功率密度和有限的组装空间对热管理提出了很高的需求。大型冷却表面需要有效覆盖。加入散热器时,先前分配的蒂姆(Tim)扩散在冷却表面上。关于分配模式的建议仅针对简单的表面几何形状,例如矩形。对于更复杂的几何形状,将计算流体动力学(CFD)模拟与手动实验结合使用。尽管CFD模拟具有很高的精度,但它们涉及模拟专家,并且设置相当昂贵。我们提出了一种轻巧的启发式,以模拟蒂姆的传播行为。我们通过对该模型的数据训练人工神经网络(ANN)进一步加快计算的速度。这提供了快速的计算时间,并进一步提供梯度信息。该ANN不仅可以用来帮助TIM的手动模式设计,而且还可以实现自动化模式优化。我们将这种方法与最先进的方法进行比较,并使用实际产品样本进行验证。

Thermal Interface Materials (TIMs) are widely used in electronic packaging. Increasing power density and limited assembly space pose high demands on thermal management. Large cooling surfaces need to be covered efficiently. When joining the heatsink, previously dispensed TIM spreads over the cooling surface. Recommendations on the dispensing pattern exist only for simple surface geometries such as rectangles. For more complex geometries, Computational Fluid Dynamics (CFD) simulations are used in combination with manual experiments. While CFD simulations offer a high accuracy, they involve simulation experts and are rather expensive to set up. We propose a lightweight heuristic to model the spreading behavior of TIM. We further speed up the calculation by training an Artificial Neural Network (ANN) on data from this model. This offers rapid computation times and further supplies gradient information. This ANN can not only be used to aid manual pattern design of TIM, but also enables an automated pattern optimization. We compare this approach against the state-of-the-art and use real product samples for validation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源