论文标题

在一环基础转换中的简单规则

Simple Rules for Evanescent Operators in One-Loop Basis Transformations

论文作者

Kumar, Jacky

论文摘要

有效运营商的基础转换通常涉及FIFEZ和其他关系,这些关系仅在$ d = 4 $时空维度中有效。总的来说,在$ d $时空的维度中,必须引入evanscent运营商来保留此类身份。此类操作员有助于一环基基转换以及两环重新归一化组的运行。在本演讲中,我讨论了一个简单的程序,用于系统地在1环的基础级别上更改基础,包括由于逃生的运营商而引起的轮班。例如,我们将此方法应用于从BMU基础的1循环基础转换中,对NLO QCD计算有用,将其用于与SMEFT匹配中使用的JMS基础。

The basis transformations of the effective operators often involve Fierz and other relations which are only valid in $D=4$ space-time dimensions. In general, in $D$ space-time dimensions, however, the evanescent operators have to be introduced to preserve such identities. Such operators contribute to one-loop basis transformations as well as to two-loop renormalization group running. In this talk, I discussed a simple procedure for systematically changing of basis at 1-loop level including shifts due to evanescent operators. As an example, we apply this method to derive the 1-loop basis transformation from the BMU basis useful for NLO QCD calculations, to the JMS basis used in the matching to the SMEFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源