论文标题

具有整数值势的离散Schrödinger操作员的半线压缩和有限段

Half-line compressions and finite sections of discrete Schrödinger operators with integer-valued potentials

论文作者

Lindner, Marko, Ukena, Riko

论文摘要

我们研究1D离散的Schrödinger运营商$ h $具有整数价值的潜力,并表明,$(i)$,$ H $的可逆性(实际上,甚至是Fredholmness)的$ h $总是意味着其半线压缩$ h _+$(零dirichlet边界条件,即矩阵截止)。尤其是,Dirichlet特征值避免了零 - 以及所有其他整数。我们使用此结果得出结论,$(ii)$,有限部分方法(通过有限和生长矩阵截断的大约反转)适用于$ h $,只要$ h $是可逆的。对于$ h _+$,也是如此。

We study 1D discrete Schrödinger operators $H$ with integer-valued potential and show that, $(i)$, invertibility (in fact, even just Fredholmness) of $H$ always implies invertibility of its half-line compression $H_+$ (zero Dirichlet boundary condition, i.e. matrix truncation). In particular, the Dirichlet eigenvalues avoid zero -- and all other integers. We use this result to conclude that, $(ii)$, the finite section method (approximate inversion via finite and growing matrix truncations) is applicable to $H$ as soon as $H$ is invertible. The same holds for $H_+$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源