论文标题

使用单像素衍射网络通过未知的随机扩散器通过未知的随机扩散器进行分类

All-optical image classification through unknown random diffusers using a single-pixel diffractive network

论文作者

Luo, Yi, Bai, Bijie, Li, Yuhang, Cetintas, Ege, Ozcan, Aydogan

论文摘要

随机且未知的散射介质背后的对象的分类为计算成像和机器视野字段的具有挑战性的任务。最新的基于深度学习的方法证明了使用图像传感器收集的扩散器延伸的模式对对象进行分类。这些方法使用在数字计算机上运行的深神经网络需要相对较大的计算。在这里,我们提出了一个全光处理器,使用单个像素检测到的宽带照明通过未知的随机相扩散器直接对未知对象进行分类。一组使用深度学习进行优化的透射衍射层形成了一个物理网络,该网络将随机扩散器后面的输入对象的空间信息映射到通过衍射网络的输出平面上检测到的输出光的功率谱。我们使用宽带辐射通过随机新扩散器对未知手写数字进行分类(在训练阶段从未使用过),并实现了88.53%的盲目测试准确性。这种通过随机扩散器的单像素全光对象分类系统基于处理宽带输入光的被动衍射层,可以通过简单地将衍射特征与波长范围成比例缩放,可以在电磁光谱的任何部分中运行。这些结果在例如生物医学成像,安全性,机器人技术和自动驾驶中具有各种潜在的应用。

Classification of an object behind a random and unknown scattering medium sets a challenging task for computational imaging and machine vision fields. Recent deep learning-based approaches demonstrated the classification of objects using diffuser-distorted patterns collected by an image sensor. These methods demand relatively large-scale computing using deep neural networks running on digital computers. Here, we present an all-optical processor to directly classify unknown objects through unknown, random phase diffusers using broadband illumination detected with a single pixel. A set of transmissive diffractive layers, optimized using deep learning, forms a physical network that all-optically maps the spatial information of an input object behind a random diffuser into the power spectrum of the output light detected through a single pixel at the output plane of the diffractive network. We numerically demonstrated the accuracy of this framework using broadband radiation to classify unknown handwritten digits through random new diffusers, never used during the training phase, and achieved a blind testing accuracy of 88.53%. This single-pixel all-optical object classification system through random diffusers is based on passive diffractive layers that process broadband input light and can operate at any part of the electromagnetic spectrum by simply scaling the diffractive features proportional to the wavelength range of interest. These results have various potential applications in, e.g., biomedical imaging, security, robotics, and autonomous driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源