论文标题
使用元学习的智能MIMO检测
Intelligent MIMO Detection Using Meta Learning
论文作者
论文摘要
在用于多输入 - 多数输出(MIMO)系统的K-最佳检测器中,K的值需要足够大才能实现接近最大的样品(ML)性能。通过将k视为可以根据某些可学习系数的拟合功能进行调整的变量,提出了基于深神经网络(DNN)的智能MIMO检测网络(DNN),以降低检测算法的复杂性,而性能降低很少。特别是,提出的智能检测算法使用元学习来学习k直接学习k的问题的拟合功能的系数。网络融合的想法用于结合元学习组件网络的学习结果。仿真结果表明,所提出的方案达到了接近ML的检测性能,而其复杂性接近线性检测器。此外,它还具有强大的快速训练能力。
In a K-best detector for multiple-input-multiple-output(MIMO) systems, the value of K needs to be sufficiently large to achieve near-maximum-likelihood (ML) performance. By treating K as a variable that can be adjusted according to a fitting function of some learnable coefficients, an intelligent MIMO detection network based on deep neural networks (DNN) is proposed to reduce complexity of the detection algorithm with little performance degradation. In particular, the proposed intelligent detection algorithm uses meta learning to learn the coefficients of the fitting function for K to circumvent the problem of learning K directly. The idea of network fusion is used to combine the learning results of the meta learning component networks. Simulation results show that the proposed scheme achieves near-ML detection performance while its complexity is close to that of linear detectors. Besides, it also exhibits strong ability of fast training.