论文标题
基于傅立叶扰动分析和频率敏感性聚类的强大而不可察觉的黑盒DNN水印
Robust and Imperceptible Black-box DNN Watermarking Based on Fourier Perturbation Analysis and Frequency Sensitivity Clustering
论文作者
论文摘要
最近,越来越多的关注集中在深神经网络(DNN)的知识产权保护上,将DNN水印促进成为热门研究主题。与将水印直接嵌入DNN参数相比,插入触发设定的水印使我们能够在不知道DNN的内部细节的情况下验证所有权,这更适合应用程序场景。成本是我们必须仔细制作扳机样品。主流方法通过将明显的模式插入空间结构域中的清洁样品来构建触发样品,该样品不考虑样品不易于识别,样品鲁棒性和模型鲁棒性,因此限制了水印的性能和模型概括。它激发了本文中的作者提出一种基于傅立叶扰动分析和频率灵敏度聚类的新型DNN水印方法。首先,我们通过应用随机扰动分析了输入样本的不同频率分量对DNN任务功能的扰动影响。然后,通过K-均值聚类,我们确定了导致触发样品制作的较高水印性能的频率成分。我们的实验表明,拟议的工作不仅在其原始任务上保持了DNN的性能,而且与相关工作相比,还提供了更好的水印性能。
Recently, more and more attention has been focused on the intellectual property protection of deep neural networks (DNNs), promoting DNN watermarking to become a hot research topic. Compared with embedding watermarks directly into DNN parameters, inserting trigger-set watermarks enables us to verify the ownership without knowing the internal details of the DNN, which is more suitable for application scenarios. The cost is we have to carefully craft the trigger samples. Mainstream methods construct the trigger samples by inserting a noticeable pattern to the clean samples in the spatial domain, which does not consider sample imperceptibility, sample robustness and model robustness, and therefore has limited the watermarking performance and the model generalization. It has motivated the authors in this paper to propose a novel DNN watermarking method based on Fourier perturbation analysis and frequency sensitivity clustering. First, we analyze the perturbation impact of different frequency components of the input sample on the task functionality of the DNN by applying random perturbation. Then, by K-means clustering, we determine the frequency components that result in superior watermarking performance for crafting the trigger samples. Our experiments show that the proposed work not only maintains the performance of the DNN on its original task, but also provides better watermarking performance compared with related works.