论文标题

用$β$ -VAE的测量BRDF的可解释的分解参数化

Interpretable Disentangled Parametrization of Measured BRDF with $β$-VAE

论文作者

Benamira, Alexis, Shah, Sachin, Pattanaik, Sumanta

论文摘要

找到测得的BRDF的低维参数表示仍然具有挑战性。当前可用的解决方案要么不可解释,要么依赖有限的分析解决方案,或者需要基于昂贵的测试主题研究。在这项工作中,我们努力建立一个参数化空间,该空间为测量的BRDF模型提供了数据驱动的表示方差,同时仍提供参数分析BRDF的艺术控制。我们提出了一种机器学习方法,该方法生成可解释的分离参数空间。一个分离的表示形式是每个参数负责唯一生成因子,并且对由其他参数编码的参数不敏感。为此,我们求助于$β$ - 变量自动编码器($β$ -VAE),这是深神经网络(DNN)的特定结构。训练我们的网络后,我们分析了参数化空间,并解释了利用我们的视觉感知的学习生成因素。应当指出的是,与大多数其他现有方法相比,在系统的下游中调用了感知分析,该方法是为了详细介绍参数化的。除此之外,我们不需要测试主题调查。我们可解释的分解参数化的一个新颖特征是将新参数与学识渊博的参数结合在一起的后处理能力,从而扩大了可生产的外观的丰富性。此外,我们的解决方案允许比流形探索更灵活,更可控制的材料编辑可能性。最后,我们提供了一个渲染界面,用于基于提出的新参数化系统的实时材料编辑和插值。

Finding a low dimensional parametric representation of measured BRDF remains challenging. Currently available solutions are either not interpretable, or rely on limited analytical solutions, or require expensive test subject based investigations. In this work, we strive to establish a parametrization space that affords the data-driven representation variance of measured BRDF models while still offering the artistic control of parametric analytical BRDFs. We present a machine learning approach that generates an interpretable disentangled parameter space. A disentangled representation is one in which each parameter is responsible for a unique generative factor and is insensitive to the ones encoded by the other parameters. To that end, we resort to a $β$-Variational AutoEncoder ($β$-VAE), a specific architecture of Deep Neural Network (DNN). After training our network, we analyze the parametrization space and interpret the learned generative factors utilizing our visual perception. It should be noted that perceptual analysis is called upon downstream of the system for interpretation purposes compared to most other existing methods where it is used upfront to elaborate the parametrization. In addition to that, we do not need a test subject investigation. A novel feature of our interpretable disentangled parametrization is the post-processing capability to incorporate new parameters along with the learned ones, thus expanding the richness of producible appearances. Furthermore, our solution allows more flexible and controllable material editing possibilities than manifold exploration. Finally, we provide a rendering interface, for real-time material editing and interpolation based on the presented new parametrization system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源