论文标题

有限群体的定向$ m $ $ $ - 隔离表示

On oriented $m$-semiregular representations of finite groups

论文作者

Du, Jia-Li, Feng, Yan-Quan, Bang, Sejeong

论文摘要

如果存在有限的$ g $,则承认{\ em定期的定期表示},如果存在$ g $的cayley digraph,以使其没有digons,并且其自动形态组是同构对$ g $。让$ m $成为一个积极的整数。在本文中,我们使用$ M $ -Cayley Digraphs将定向定期表示形式的概念扩展到定向$ m $ $ $ - 隔离表示。给定有限的$ g $,$ g $的{\ em $ m $ -M $ -CAYLEY DIGRAPH}是一个Digraph,它具有一组自动形态的同构至$ G $,以$ M $ ORBITS的顶点套件上的semiregulariand。我们说,如果存在常规的$ m $ m $ -m $ -cayley digraph $ g $的{\ em $ m $ $ -semiregular代表},有限的组$ g $允许$ g $ $ g $,因此它没有digons,并且$ g $是对其自动形态群的同构。在本文中,我们对有限小组进行了分类,该小组承认每个​​正整数$ m $ a $ $ m $ m $ semiregular表示。

A finite group $G$ admits an {\em oriented regular representation} if there exists a Cayley digraph of $G$ such that it has no digons and its automorphism group is isomorphic to $G$. Let $m$ be a positive integer. In this paper, we extend the notion of oriented regular representations to oriented $m$-semiregular representations using $m$-Cayley digraphs. Given a finite group $G$, an {\em $m$-Cayley digraph} of $G$ is a digraph that has a group of automorphisms isomorphic to $G$ acting semiregularly on the vertex set with $m$ orbits. We say that a finite group $G$ admits an {\em oriented $m$-semiregular representation} if there exists a regular $m$-Cayley digraph of $G$ such that it has no digons and $G$ is isomorphic to its automorphism group. In this paper, we classify finite groups admitting an oriented $m$-semiregular representation for each positive integer $m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源