论文标题

RadSegnet:一种可靠的雷达相机融合的方法

RadSegNet: A Reliable Approach to Radar Camera Fusion

论文作者

Bansal, Kshitiz, Rungta, Keshav, Bharadia, Dinesh

论文摘要

在过去的几年中,自动驾驶的感知系统在其表现方面取得了重大进步。但是,这些系统在极端天气条件下努力表现出稳健性,因为在这些条件下,传感器和相机等传感器套件中的主要传感器都会下降。为了解决此问题,摄像机雷达融合系统为所有天气可靠的高质量感知提供了独特的机会。相机提供丰富的语义信息,而雷达可以通过遮挡和在所有天气条件下工作。在这项工作中,我们表明,当摄像机输入降解时,最新的融合方法的性能很差,这实际上导致失去了他们设定的全天可靠性。与这些方法相反,我们提出了一种新方法RadSegnet,该方法使用了独立信息提取的新设计理念,并在所有情况下都可以在所有情况下真正实现可靠性,包括遮挡和不利天气。我们在基准ASTYX数据集上开发并验证了我们提出的系统,并在辐射数据集上进一步验证了这些结果。与最先进的方法相比,Radsegnet在ASTYX上取得了27%的提高,辐射增长了41.46%,平均精度得分,并且在不利天气条件下的性能明显更好

Perception systems for autonomous driving have seen significant advancements in their performance over last few years. However, these systems struggle to show robustness in extreme weather conditions because sensors like lidars and cameras, which are the primary sensors in a sensor suite, see a decline in performance under these conditions. In order to solve this problem, camera-radar fusion systems provide a unique opportunity for all weather reliable high quality perception. Cameras provides rich semantic information while radars can work through occlusions and in all weather conditions. In this work, we show that the state-of-the-art fusion methods perform poorly when camera input is degraded, which essentially results in losing the all-weather reliability they set out to achieve. Contrary to these approaches, we propose a new method, RadSegNet, that uses a new design philosophy of independent information extraction and truly achieves reliability in all conditions, including occlusions and adverse weather. We develop and validate our proposed system on the benchmark Astyx dataset and further verify these results on the RADIATE dataset. When compared to state-of-the-art methods, RadSegNet achieves a 27% improvement on Astyx and 41.46% increase on RADIATE, in average precision score and maintains a significantly better performance in adverse weather conditions

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源