论文标题

基于视频的人类行动识别使用深度学习:评论

Video-based Human Action Recognition using Deep Learning: A Review

论文作者

Pham, Hieu H., Khoudour, Louahdi, Crouzil, Alain, Zegers, Pablo, Velastin, Sergio A.

论文摘要

人类行动识别是计算机视觉中的重要应用领域。它的主要目的是准确描述人类的行为及其相互作用,从传感器获得的先前看不见的数据序列中。识别,理解和预测复杂人类行动的能力可以构建许多重要的应用,例如智能监视系统,人力计算机界面,医疗保健,安全和军事应用。近年来,计算机视觉社区特别关注了深度学习。本文概述了使用深度学习技术的视频分析概述了当前的动作识别。我们介绍了识别人类行为的最重要的深度学习模型,并分析它们,以提供用于解决人类行动识别问题的深度学习算法的当前进展,以突出其优势和缺点。基于文献中报道的识别精度的定量分析,我们的研究确定了动作识别中最新的深层体系结构,然后为该领域的未来工作提供当前的趋势和开放问题。

Human action recognition is an important application domain in computer vision. Its primary aim is to accurately describe human actions and their interactions from a previously unseen data sequence acquired by sensors. The ability to recognize, understand, and predict complex human actions enables the construction of many important applications such as intelligent surveillance systems, human-computer interfaces, health care, security, and military applications. In recent years, deep learning has been given particular attention by the computer vision community. This paper presents an overview of the current state-of-the-art in action recognition using video analysis with deep learning techniques. We present the most important deep learning models for recognizing human actions, and analyze them to provide the current progress of deep learning algorithms applied to solve human action recognition problems in realistic videos highlighting their advantages and disadvantages. Based on the quantitative analysis using recognition accuracies reported in the literature, our study identifies state-of-the-art deep architectures in action recognition and then provides current trends and open problems for future works in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源