论文标题

超氟中的对成对激发的少量到许多粒子的跨界

Few-to-many-particle crossover of pair excitations in a superfluid

论文作者

Resare, Fabian, Hofmann, Johannes

论文摘要

在创造几体原子费米气体具有吸引人相互作用的最新进展的推动下,我们从理论上研究了成对激发的几个到许多粒子的交叉,对于大粒子数量而言,该模式描述了一种描述超级流体顺序参数振幅波动的模式(“ higgs”模式)。我们的分析是基于以下假设:激发光谱的显着方面是通过谐波振荡器潜力中的时间转换对状态之间的相互作用来捕获的。从显微镜上讲,此假设导致了理查森型配对模型,该模型是可集成的,因此只需少量的数值努力,就可以系统地进行对少数到许多粒子交叉的研究。我们首先在地面能量中建立了平价效应,即与其封闭的邻居相比,开放式壳配置能量的光谱凸度,该邻居通过所谓的Matveev-larkin参数量化,该参数讨论了中镜超导体的所谓Matveev-larkin参数,该参数用于中镜超导体,这将差异差异与近距离范围差异差异,并在几乎没有范围内进行了差异,并有一个差异。该数量的交叉点是相互作用强度的函数的广泛调谐。然后,我们计算激发光谱,并证明两对激发能显示出最小的粒子数量加深并转移到较小的相互作用强度,这与量子相变的有限尺寸前体转变为超流体状态。我们提取一个临界有限尺寸的缩放指数,该指数表征了随着粒子数的增加,间隙的减小。

Motivated by recent advances in the creation of few-body atomic Fermi gases with attractive interactions, we study theoretically the few-to-many-particle crossover of pair excitations, which for large particle numbers evolve into a mode that describes amplitude fluctuations of the superfluid order parameter (the "Higgs" mode). Our analysis is based on the hypothesis that salient aspects of the excitation spectrum are captured by interactions between time-reversed pair states in a harmonic oscillator potential. Microscopically, this assumption leads to a Richardson-type pairing model, which is integrable and thus allows a systematic quantitative study of the few-to-many-particle crossover with only minor numerical effort. We first establish a parity effect in the ground-state energy, i.e., a spectral convexity in the energy of open-shell configurations compared to their closed-shell neighbors, which is quantified by a so-called Matveev-Larkin parameter discussed for mesoscopic superconductors, which generalizes the pairing gap to mesoscopic ensembles and which behaves quantitatively differently in a few-body and a many-body regime. The crossover point for this quantity is widely tunable as a function of interaction strength. We then compute the excitation spectrum and demonstrate that the pair excitation energy shows a minimum that deepens with increasing particle number and shifts to smaller interaction strengths, consistent with the finite-size precursor of a quantum phase transition to a superfluid state. We extract a critical finite-size scaling exponent that characterizes the decrease of the gap with increasing particle number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源