论文标题

通过张量图完成的自适应不完整的多视图学习

Adaptive incomplete multi-view learning via tensor graph completion

论文作者

Zhang, Heng, Chen, Xiaohong

论文摘要

随着数据采集技术的发展,多视图学习已成为一个热门话题。一些多视图学习方法假设多视图数据已经完成,这意味着所有实例都存在,但这太理想了。某些用于传递不完整多视图数据的基于张量的方法已经出现并取得了更好的结果。但是,仍然存在一些问题,例如使用传统张量规范,这使得计算很高,无法处理样本外。为了解决这两个问题,我们提出了一种新的不完整的多视图学习方法。定义了一个新的张量规范来实现图形张量数据恢复。然后将恢复的图定于样品的一致的低维表示。此外,自适应权重配备了每种视图,以调整不同视图的重要性。与现有方法相比,我们的方法也不仅仅探讨视图之间的一致性,但也通过使用学习的投影矩阵获得了新样本的低维表示。基于不精确的增强Lagrange乘数(ALM)方法的有效算法旨在解决模型,并证明了收敛性。四个数据集的实验结果显示了我们方法的有效性。

With the advancement of the data acquisition techniques, multi-view learning has become a hot topic. Some multi-view learning methods assume that the multi-view data is complete, which means that all instances are present, but this too ideal. Certain tensor-based methods for handing incomplete multi-view data have emerged and have achieved better result. However, there are still some problems, such as use of traditional tensor norm which makes the computation high and is not able to handle out-of-sample. To solve these two problems, we proposed a new incomplete multi view learning method. A new tensor norm is defined to implement graph tensor data recover. The recovered graphs are then regularized to a consistent low-dimensional representation of the samples. In addition, adaptive weights are equipped to each view to adjust the importance of different views. Compared with the existing methods, our method nor only explores the consistency among views, but also obtains the low-dimensional representation of the new samples by using the learned projection matrix. An efficient algorithm based on inexact augmented Lagrange multiplier (ALM) method are designed to solve the model and convergence is proved. Experimental results on four datasets show the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源