论文标题
多目标贝叶斯全局优化的平行技术:使用改进的概率选择
A Parallel Technique for Multi-objective Bayesian Global Optimization: Using a Batch Selection of Probability of Improvement
论文作者
论文摘要
贝叶斯全球优化(BGO)是一种有效的替代辅助技术,用于涉及昂贵评估的问题。可以使用并行技术在一次迭代中评估真实昂贵的目标功能以增加执行时间。一种有效而直接的方法是设计一种采集函数,可以在一次迭代中评估多个解决方案的浴缸而不是单点/解决方案的性能。本文提出了\ emph {改进的概率}(poi)的五个替代方案,其中有多个点(q-poi),用于多目标贝叶斯全局优化(MOBGO),从而考虑了多个点之间的协方差。提供了所有建议的Q-POIS的精确计算公式和蒙特卡洛近似算法。基于与帕累托 - 前相关的多个点的分布,研究了五个Q-POI的位置依赖性行为。此外,将五个Q-Pois与其他二十个生物目标基准上的其他九个最先进的杂物算法进行了比较。进行了各种基准的实证实验,以证明两个贪婪的Q-Pois($ \ kpoi _ {\ mbox {\ mbox {best}} $和$ \ kpoi _ {\ kpoi _ {\ mbox {all ($ \ kpoi _ {\ mbox {one}} $和$ \ kpoi _ {\ mbox {worst}} $)在难以及时抗衡的Pareto前边界的高维问题上。
Bayesian global optimization (BGO) is an efficient surrogate-assisted technique for problems involving expensive evaluations. A parallel technique can be used to parallelly evaluate the true-expensive objective functions in one iteration to boost the execution time. An effective and straightforward approach is to design an acquisition function that can evaluate the performance of a bath of multiple solutions, instead of a single point/solution, in one iteration. This paper proposes five alternatives of \emph{Probability of Improvement} (PoI) with multiple points in a batch (q-PoI) for multi-objective Bayesian global optimization (MOBGO), taking the covariance among multiple points into account. Both exact computational formulas and the Monte Carlo approximation algorithms for all proposed q-PoIs are provided. Based on the distribution of the multiple points relevant to the Pareto-front, the position-dependent behavior of the five q-PoIs is investigated. Moreover, the five q-PoIs are compared with the other nine state-of-the-art and recently proposed batch MOBGO algorithms on twenty bio-objective benchmarks. The empirical experiments on different variety of benchmarks are conducted to demonstrate the effectiveness of two greedy q-PoIs ($\kpoi_{\mbox{best}}$ and $\kpoi_{\mbox{all}}$) on low-dimensional problems and the effectiveness of two explorative q-PoIs ($\kpoi_{\mbox{one}}$ and $\kpoi_{\mbox{worst}}$) on high-dimensional problems with difficult-to-approximate Pareto front boundaries.