论文标题
婴儿一般运动的弱监督在线行动检测
Weakly Supervised Online Action Detection for Infant General Movements
论文作者
论文摘要
为了使婴儿脑瘫(CP)的早期医疗干预,早期诊断脑损伤至关重要。尽管一般运动评估(GMA)在早期CP检测中显示出令人鼓舞的结果,但这很费力。大多数现有作品都以视频为输入,以对GMA自动化进行烦躁的动作(FMS)分类。这些方法需要对视频进行完整的观察,并且无法定位包含正常FMS的视频帧。因此,我们提出了一种名为WO-GMA的新颖方法,以在弱监督的在线环境中执行FMS本地化。首先将婴儿的关键点作为WO-GMA的输入提取。然后,WO-GMA执行本地时空提取,然后进行两个网络分支,以生成伪夹标签和模型在线操作。凭借剪辑级伪标签,动作建模分支学会了以在线方式检测FMS。具有757个不同婴儿视频的数据集上的实验结果表明,WO-GMA可以获得最新的视频级分类和Cliplevel检测结果。此外,仅需要前20%的视频持续时间才能获得与完全观察到的分类结果,这意味着FMS诊断时间大大缩短了。代码可在以下网址提供:https://github.com/scofiedluo/wo-gma。
To make the earlier medical intervention of infants' cerebral palsy (CP), early diagnosis of brain damage is critical. Although general movements assessment(GMA) has shown promising results in early CP detection, it is laborious. Most existing works take videos as input to make fidgety movements(FMs) classification for the GMA automation. Those methods require a complete observation of videos and can not localize video frames containing normal FMs. Therefore we propose a novel approach named WO-GMA to perform FMs localization in the weakly supervised online setting. Infant body keypoints are first extracted as the inputs to WO-GMA. Then WO-GMA performs local spatio-temporal extraction followed by two network branches to generate pseudo clip labels and model online actions. With the clip-level pseudo labels, the action modeling branch learns to detect FMs in an online fashion. Experimental results on a dataset with 757 videos of different infants show that WO-GMA can get state-of-the-art video-level classification and cliplevel detection results. Moreover, only the first 20% duration of the video is needed to get classification results as good as fully observed, implying a significantly shortened FMs diagnosis time. Code is available at: https://github.com/scofiedluo/WO-GMA.