论文标题

用于多个对象跟踪的基于变压器的分配决策网络

Transformer-based assignment decision network for multiple object tracking

论文作者

Psalta, Athena, Tsironis, Vasileios, Karantzalos, Konstantinos

论文摘要

数据关联是遵循逐个检测范式跟踪的任何多个对象跟踪方法(MOT)方法的关键组件。为了生成完整的轨迹,这种方法采用数据关联过程来在每个时间步长期间建立检测和现有目标之间的分配。最近的数据关联方法试图解决多维线性分配任务或网络流量最小化问题或通过多个假设跟踪解决它。但是,在推论过程中,每个序列框架都需要计算最佳分配的优化步骤,从而引起任何给定解决方案的额外复杂性。为此,在这项工作的背景下,我们介绍了基于变压器的作业决策网络(TADN),该决策网络(TADN)可以解决数据关联,而无需在推理过程中进行任何明确的优化。特别是,TADN可以直接在网络的单个正向传球中直接推断检测和主动目标之间的分配对。我们已经将TADN整合到一个相当简单的MOT框架中,设计了一种新颖的培训策略,以进行有效的端到端培训,并在几个流行的基准测试中,即Mot17,Mot20和UA-Detrac展示了我们在线视觉跟踪MOT的高潜力。我们提出的方法在大多数评估指标中表现出强劲的性能,尽管它的性质简单,因为它是缺乏遮挡处理或重新识别的重要辅助组件的跟踪器。我们的方法的实现可在https://github.com/psaltaath/tadn-mot上公开获得。

Data association is a crucial component for any multiple object tracking (MOT) method that follows the tracking-by-detection paradigm. To generate complete trajectories such methods employ a data association process to establish assignments between detections and existing targets during each timestep. Recent data association approaches try to solve either a multi-dimensional linear assignment task or a network flow minimization problem or tackle it via multiple hypotheses tracking. However, during inference an optimization step that computes optimal assignments is required for every sequence frame inducing additional complexity to any given solution. To this end, in the context of this work we introduce Transformer-based Assignment Decision Network (TADN) that tackles data association without the need of any explicit optimization during inference. In particular, TADN can directly infer assignment pairs between detections and active targets in a single forward pass of the network. We have integrated TADN in a rather simple MOT framework, designed a novel training strategy for efficient end-to-end training and demonstrated the high potential of our approach for online visual tracking-by-detection MOT on several popular benchmarks, i.e. MOT17, MOT20 and UA-DETRAC. Our proposed approach demonstrates strong performance in most evaluation metrics despite its simple nature as a tracker lacking significant auxiliary components such as occlusion handling or re-identification. The implementation of our method is publicly available at https://github.com/psaltaath/tadn-mot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源