论文标题
具有分裂和拓扑缺陷的石墨烯量子点:促进可调波长迅速和延迟荧光的新型材料
Graphene Quantum Dot with Divacancy and Topological Defects: A Novel Material for Promoting Prompt and Delayed Fluorescence of Tunable Wavelengths
论文作者
论文摘要
这项工作证明了在拓扑结石类型中引入分区缺陷的独特方法,用于收集单线和三重态激子,这对于制造荧光有机灯发光二极管必不可少。在这里,我们首先揭示了这些系统的结构放松将高旋转三重态确定为室温下的稳定基态,从而显着增加了它们在设计Spintronic设备方面的潜力。然后,我们广泛的电子相关计算表明,在这些松弛的结构中,单线和三重态的能量顺序可以通过各种衰减通道触发不同波长的迅速和延迟荧光。特别是,分区的位置决定了发射波长的可调性范围。此外,我们从多参考单打的结果获得的结果均构成配置互动(MRSDCI)和第一原理,与时间相关的密度理论(TDDFT)方法论强调,剥夺位置的协同作用,结构放松,结构性放松和自旋多重的跨度均具有特定性的跨度,以构建高度的跨度,并构成了强制性的跨度,并构成了强烈的跨度范围。设备。
This work demonstrates the unique approach of introducing divacancy imperfections in topological Stone-Wales type defected graphene quantum dots for harvesting both singlet and triplet excitons, essential for fabricating fluorescent organic light-emitting diodes. Here, we first reveal that structural relaxation of these systems establishes the high-spin triplet state as the stable ground state at room temperature, thereby significantly increasing their potential in designing spintronic devices. Our extensive electron-correlated computations then demonstrate that the energetic ordering of the singlet and triplet states in these relaxed structures can trigger both prompt and delayed fluorescence of different wavelengths through various decay channels. Particularly, the position of divacancy determines the tunability range of the emission wavelengths. In addition, our results obtained from both multi-reference singles-doubles configurationinteraction (MRSDCI) and first-principles time-dependent density functional theory (TDDFT) methodologies highlight that the synergetic effects of divacancy-position,structural relaxation and spin multiplicity critically govern the nature and magnitude of shift exhibited by the most intense peak of the absorption profile, crucial for designing optoelectronic devices.