论文标题

通过自动策略的指导贴片在现代相机分辨率上介绍

Inpainting at Modern Camera Resolution by Guided PatchMatch with Auto-Curation

论文作者

Zhang, Lingzhi, Barnes, Connelly, Wampler, Kevin, Amirghodsi, Sohrab, Shechtman, Eli, Lin, Zhe, Shi, Jianbo

论文摘要

最近,Deep Models已经建立了SOTA性能,用于低分辨率图像介绍,但它们缺乏与现代相机(例如4K或更多相关的分辨率)和大孔相关的分辨率。我们为4K及以上代表现代传感器的照片贡献了一个介绍的基准数据集。我们展示了一个结合深度学习和传统方法的新颖框架。我们使用现有的深入介质模型喇嘛合理地填充孔,建立三个由结构,分割,深度组成的指南图像,并应用多个引导的贴片匹配,以产生八个候选候选图像。接下来,我们通过一个新型的策划模块来喂食所有候选构图,该模块选择了8x8反对称成对偏好矩阵的列求和良好的介绍。我们的框架的结果受到了8个强大基线的用户的压倒性优先,其定量指标的改进高达7.4,而不是最佳基线喇嘛,而我们的技术与4种不同的SOTA插入式底板相比,我们的技术都会改善每个底板,以使我们的产品与用户相比超过强大的超级基线优先。

Recently, deep models have established SOTA performance for low-resolution image inpainting, but they lack fidelity at resolutions associated with modern cameras such as 4K or more, and for large holes. We contribute an inpainting benchmark dataset of photos at 4K and above representative of modern sensors. We demonstrate a novel framework that combines deep learning and traditional methods. We use an existing deep inpainting model LaMa to fill the hole plausibly, establish three guide images consisting of structure, segmentation, depth, and apply a multiply-guided PatchMatch to produce eight candidate upsampled inpainted images. Next, we feed all candidate inpaintings through a novel curation module that chooses a good inpainting by column summation on an 8x8 antisymmetric pairwise preference matrix. Our framework's results are overwhelmingly preferred by users over 8 strong baselines, with improvements of quantitative metrics up to 7.4 over the best baseline LaMa, and our technique when paired with 4 different SOTA inpainting backbones improves each such that ours is overwhelmingly preferred by users over a strong super-res baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源