论文标题

多面体放松,用于最佳的饮用水分配网络的最佳泵计划

Polyhedral Relaxations for Optimal Pump Scheduling of Potable Water Distribution Networks

论文作者

Tasseff, Byron, Bent, Russell, Coffrin, Carleton, Barrows, Clayton, Sigler, Devon, Stickel, Jonathan, Zamzam, Ahmed S., Liu, Yang, Van Hentenryck, Pascal

论文摘要

用于水分配网络(WDNS)的经典泵调度或最佳水流(OWF)问题可最大程度地减少给定WDN在固定时间范围内的功耗成本。 OWF的确切形式是一项具有计算挑战性的混合企业非线性计划(MINLP)。非线性平等约束,建模网络物理学,模拟操作控制的离散变量以及对存储设备更改为存储设备的跨时空约束,这使它变得复杂。为了应对OWF的计算挑战,本文通过二元理论产生了原始MINLP的紧密多面体松弛,从而导致了新颖的有效不平等(或剪切),并实现了新型的基于优化的界限拧紧和切割生成程序。每种新方法的功效都通过测量四十五个文献实例的OWF原始和双重界限的经验改进来严格评估。评估表明,我们的放松改进,模型加强技术以及经过深思熟虑的多面体松弛分区方案可以基本上改善OWF原始和双重界限,尤其是与不利用这些新方法的类似基于放松的技术相比。

The classic pump scheduling or Optimal Water Flow (OWF) problem for water distribution networks (WDNs) minimizes the cost of power consumption for a given WDN over a fixed time horizon. In its exact form, the OWF is a computationally challenging mixed-integer nonlinear program (MINLP). It is complicated by nonlinear equality constraints that model network physics, discrete variables that model operational controls, and intertemporal constraints that model changes to storage devices. To address the computational challenges of the OWF, this paper develops tight polyhedral relaxations of the original MINLP, derives novel valid inequalities (or cuts) using duality theory, and implements novel optimization-based bound tightening and cut generation procedures. The efficacy of each new method is rigorously evaluated by measuring empirical improvements in OWF primal and dual bounds over forty-five literature instances. The evaluation suggests that our relaxation improvements, model strengthening techniques, and a thoughtfully selected polyhedral relaxation partitioning scheme can substantially improve OWF primal and dual bounds, especially when compared with similar relaxation-based techniques that do not leverage these new methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源