论文标题
复杂的非马克维亚动力学以及星形胶质细胞在阿尔茨海默氏病发展和传播中的双重作用
Complex non-Markovian dynamics and the dual role of astrocytes in Alzheimer's disease development and propagation
论文作者
论文摘要
如今,阿尔茨海默氏病(AD)是一种常见的神经退行性疾病。淀粉样蛋白β($β$)和tau蛋白是AD开发或传播的主要因素。在AD中,A $β$蛋白会汇合在一起,形成斑块并破坏细胞功能。另一方面,大脑的异常化学变化有助于建立阻塞神经元传输系统的粘性tau缠结。星形胶质细胞通常通过清除A $β$斑块(有毒A $β$)来保持健康的平衡。然而,过度激活的星形胶质细胞在存在$β$的情况下释放趋化因子和细胞因子,并对促炎性细胞因子反应,从而进一步增加了$β$的产生。在本文中,我们构建了一个数学模型,该模型可以捕获星形胶质细胞的双重行为。此外,我们揭示了疾病的传播取决于当前的时间实例和疾病早期的状态,称为``记忆效应''。我们考虑一个分数阶网络数学模型,以捕获这种记忆效应对AD传播的影响。我们已经将大脑连接组数据整合到模型中,并研究了记忆效应,星形胶质细胞的双重作用以及大脑的神经元损害。基于病理,基本,次要和混合的tauopathies参数在模型中考虑。由于混合的tauopathy,大脑连接组中的不同大脑淋巴结或区域会积累$β$和tau蛋白的不同毒性浓度。最后,我们解释了记忆效应如何减慢大脑中这种有毒蛋白的传播,从而降低神经元损伤的速度。
Alzheimer's disease (AD) is a common neurodegenerative disorder nowadays. Amyloid-beta (A$β$) and tau proteins are among the main contributors to the development or propagation of AD. In AD, A$β$ proteins clump together to form plaques and disrupt cell functions. On the other hand, the abnormal chemical change in the brain helps to build sticky tau tangles that block the neuron's transport system. Astrocytes generally maintain a healthy balance in the brain by clearing the A$β$ plaques (toxic A$β$). However, over-activated astrocytes release chemokines and cytokines in the presence of A$β$ and react to pro-inflammatory cytokines, further increasing the production of A$β$. In this paper, we construct a mathematical model that can capture astrocytes' dual behaviour. Furthermore, we reveal that the disease propagation depends on the current time instance and the disease's earlier status, called the ``memory effect''. We consider a fractional order network mathematical model to capture the influence of such memory effect on AD propagation. We have integrated brain connectome data into the model and studied the memory effect, the dual role of astrocytes, and the brain's neuronal damage. Based on the pathology, primary, secondary, and mixed tauopathies parameters are considered in the model. Due to the mixed tauopathy, different brain nodes or regions in the brain connectome accumulate different toxic concentrations of A$β$ and tau proteins. Finally, we explain how the memory effect can slow down the propagation of such toxic proteins in the brain, decreasing the rate of neuronal damage.