论文标题
在恒定非交通性vilenkin群体上耐力不平等
Hardy inequalities on constant-order noncommutative Vilenkin groups
论文作者
论文摘要
在本说明中,我们将几个积分不平等扩展到了非共同的Vilenkin群体的背景。我们证明了对Hardy运算符和恒定的非交通式vilenkin组上的Hardy操作员和Hardy-Little Wood-p {ó} Lya操作员的尖锐弱和强类型估计。 In particular for graded $\K$-Lie groups, where $\K$ is a non-archimedean local field, we additionally provide some functional inequalities, like the Hardy-Littlewood-Sobolev unequality and the Stein-Weiss inequality, linking some classes of homogeneous pseudo-differential operators, like the Vladimirov-Taibleson operator and the Vladimirov Laplacian, with强壮的不平等。
In this note we extend several integral inequalities to the context of noncommutative Vilenkin groups. We prove some sharp weak and strong type estimates for the Hardy operator and the Hardy-Littlewood-P{ó}lya operator on constant-order noncommutative Vilenkin groups. In particular for graded $\K$-Lie groups, where $\K$ is a non-archimedean local field, we additionally provide some functional inequalities, like the Hardy-Littlewood-Sobolev unequality and the Stein-Weiss inequality, linking some classes of homogeneous pseudo-differential operators, like the Vladimirov-Taibleson operator and the Vladimirov Laplacian, with Hardy inequalities.