论文标题
左半牙环,半领产品和左取消左半束缚
Left seminear-rings, groups semidirect products and left cancellative left semi-braces
论文作者
论文摘要
我们研究左取消左半束缚与其他现有代数结构之间的一些关系。特别是,我们表明,每个左半括号都是由左静emear环构成的,从偏斜的左括号和左圆形之间扩展了rump给予的对应关系,\ cite {rump2019set}。此外,我们显示了某些组半程产物和左取消的左半束缚之间的对应关系,这些左半插管满足了一组diDempotents的其他假设。作为一个应用程序,我们将左取消的左左半插入分类为$ $ pq $和$ 2p^2 $,以使iDempotents $ e $的集合是乘法组的Sylow子组。最后,我们研究了最近在\ cite {catino20222nilpotency}中引入的各种类型的niltotenty,这些左式左侧的半毛。
We study some relations between left cancellative left semi-braces and other existing algebraic structures. In particular, we show that every left semi-brace arises from a left seminear-ring, extending the correspondence given by Rump between skew left braces and left near-rings in \cite{rump2019set}. Moreover, we show a correspondence between certain groups semidirect products and left cancellative left semi-braces satisfying an additional hypothesis on the set of idempotents. As an application, we classify left cancellative left semi-braces of size $pq$ and $2p^2$ such that the set of idempotents $E$ is a Sylow subgroup of the multiplicative group. Finally, we study various type of nilpotency, recently introduced in \cite{catino2022nilpotency}, of these left semi-braces.