论文标题

Haloae:基于Halonet的本地变压器自动编码器用于异常检测和定位

HaloAE: An HaloNet based Local Transformer Auto-Encoder for Anomaly Detection and Localization

论文作者

Mathian, E., Liu, H., Fernandez-Cuesta, L., Samaras, D., Foll, M., Chen, L.

论文摘要

无监督的异常检测和定位是至关重要的任务,因为不可能收集和标记所有可能的异常。许多研究强调了整合本地和全球信息以实现异常分割的重要性。为此,对变压器的兴趣越来越大,它允许对远程内容相互作用进行建模。但是,对于大多数图像量表而言,通过自我注意力的全球互动通常太昂贵了。在这项研究中,我们介绍了Haloae,这是第一个基于使用Halonet的本地2D版本的自动编码器。使用Haloae,我们创建了一个混合模型,该模型结合了卷积和局部2D块的自我发项层,并通过单个模型共同执行异常检测和分割。我们在MVTEC数据集上取得了竞争成果,这表明融合变压器的视觉模型可以受益于自我注意操作的本地计算,并为其他应用铺平道路。

Unsupervised anomaly detection and localization is a crucial task as it is impossible to collect and label all possible anomalies. Many studies have emphasized the importance of integrating local and global information to achieve accurate segmentation of anomalies. To this end, there has been a growing interest in Transformer, which allows modeling long-range content interactions. However, global interactions through self attention are generally too expensive for most image scales. In this study, we introduce HaloAE, the first auto-encoder based on a local 2D version of Transformer with HaloNet. With HaloAE, we have created a hybrid model that combines convolution and local 2D block-wise self-attention layers and jointly performs anomaly detection and segmentation through a single model. We achieved competitive results on the MVTec dataset, suggesting that vision models incorporating Transformer could benefit from a local computation of the self-attention operation, and pave the way for other applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源