论文标题
PC-EXPO:基于指标的交互式轴重新排序的方法,用于并行坐标显示
PC-Expo: A Metrics-Based Interactive Axes Reordering Method for Parallel Coordinate Displays
论文作者
论文摘要
PCP中的Axes排序根据用户对PCP polyline的看法从数据中提出了一个特定的故事。现有的作品着重于基于某些常见分析任务(例如聚类,邻域和相关性)直接优化PCP轴排序。但是,基于这些共同属性的PCP轴的直接优化是限制性的,因为它不能解释轴之间发生的多个属性以及数据中小区域中发生的局部属性。同样,这些技术中的许多不支持人类范围(HIL)范式,这对于解释性至关重要(i)至关重要,并且(ii)在没有单个重新排序方案适合用户目标的情况下。为了减轻这些问题,我们提出了PC-Expo,这是一个实时视觉分析框架,用于多合一的PCP线模式检测和轴重新排序。我们研究了PCP中的线模式与不同的数据分析任务和数据集的连接。 PC-EXPO通过为12个最常见的分析任务(属性)开发实时的局部检测方案来扩展PCP轴上的先前工作。用户可以通过直接优化其属性选择来选择他们想要与PCP展示的故事。这些属性可以被排名,也可以使用单个权重进行排名,从而为轴重新排序创建自定义优化方案。用户可以控制他们想要在数据中使用检测方案的粒度,从而探索本地区域。 PC-Expo还通过局部特性可视化支持HIL轴重新排序,该可视化显示了每个轴对的颗粒活性区域。当没有单个重新排序方案适合用户目标时,本地质体可视化有助于基于多个属性重新排序的PCP轴。
The axes ordering in PCP presents a particular story from the data based on the user perception of PCP polylines. Existing works focus on directly optimizing for PCP axes ordering based on some common analysis tasks like clustering, neighborhood, and correlation. However, direct optimization for PCP axes based on these common properties is restrictive because it does not account for multiple properties occurring between the axes, and for local properties that occur in small regions in the data. Also, many of these techniques do not support the human-in-the-loop (HIL) paradigm, which is crucial (i) for explainability and (ii) in cases where no single reordering scheme fits the user goals. To alleviate these problems, we present PC-Expo, a real-time visual analytics framework for all-in-one PCP line pattern detection, and axes reordering. We studied the connection of line patterns in PCPs with different data analysis tasks and datasets. PC-Expo expands prior work on PCP axes reordering by developing real-time, local detection schemes for the 12 most common analysis tasks (properties). Users can choose the story they want to present with PCPs by optimizing directly over their choice of properties. These properties can be ranked, or combined using individual weights, creating a custom optimization scheme for axes reordering. Users can control the granularity at which they want to work with their detection scheme in the data, allowing exploration of local regions. PC-Expo also supports HIL axes reordering via local-property visualization, which shows the regions of granular activity for every axis pair. Local-property visualization is helpful for PCP axes reordering based on multiple properties, when no single reordering scheme fits the user goals.