论文标题
更好的图像插入的关键:结构和纹理齐头并进
Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand
论文作者
论文摘要
深层图像介绍取得了令人印象深刻的进步,随着图像产生和处理算法的最新进展。我们声称,可以通过生成的结构和纹理更好地判断介入算法的性能。结构是指孔中生成的对象边界或新的几何结构,而纹理是指高频细节,尤其是在结构区域内填充的人造重复模式。我们认为,通常可以从基于粗糙的GAN的发电机网络获得更好的结构,而如今重复模式可以通过最先进的高频快速快速傅立叶卷积层进行更好的建模。在本文中,我们提出了一个新颖的介绍网络,结合了这两种设计的优势。因此,我们的模型具有出色的视觉质量,可以匹配结构生成和使用单个网络重复纹理合成的最新性能。广泛的实验证明了该方法的有效性,我们的结论进一步突出了图像覆盖质量,结构和纹理的两个关键因素,即未来的设计方向。
Deep image inpainting has made impressive progress with recent advances in image generation and processing algorithms. We claim that the performance of inpainting algorithms can be better judged by the generated structures and textures. Structures refer to the generated object boundary or novel geometric structures within the hole, while texture refers to high-frequency details, especially man-made repeating patterns filled inside the structural regions. We believe that better structures are usually obtained from a coarse-to-fine GAN-based generator network while repeating patterns nowadays can be better modeled using state-of-the-art high-frequency fast fourier convolutional layers. In this paper, we propose a novel inpainting network combining the advantages of the two designs. Therefore, our model achieves a remarkable visual quality to match state-of-the-art performance in both structure generation and repeating texture synthesis using a single network. Extensive experiments demonstrate the effectiveness of the method, and our conclusions further highlight the two critical factors of image inpainting quality, structures, and textures, as the future design directions of inpainting networks.