论文标题
6D SCFTS至4D $ \ MATHCAL {N} = 1 $ SCFTS的5D透视图
A 5d perspective on the compactifications of 6d SCFTs to 4d $\mathcal{N}=1$ SCFTs
论文作者
论文摘要
压缩6D超符号野外理论(SCFT)至4D $ \ MATHCAL {n} = 1 $在两个函数球(管)上的理论(管)和带有通量的Tori在5d $ \ natcal {n} = 1 $ kaluza-klein($ denot)$ $ plux $ plux $ plux $ plux $ pluls $ pluls $ pluls $ pl $ $ walls $。我们重新审视了这种结构,并从5D角度详细研究了它,特别是使用5D理论的扩展库仑分支阶段的框图描述来重新绘制它。这种观点可能有助于理解如何等效地实现来自M理论的几何工程的4D $ \ Mathcal {n} = 1 $模型。在此过程中,我们展示了如何从5D角度恢复4D理论的各种属性,例如与域墙配置相关的通量以及$ \ Mathfrak {u}(1)$全球对称性的4D理论中的全局对称性,从TheTube上的KK对称性下降到TheThe The The The The The The The The The The The The Indevets flux flux subgroup to flux torus。我们使用等级1电子弦理论演示了所有这些思想。
Compactifying 6d superconformal field theories (SCFTs) to 4d $\mathcal{N}=1$ theories on two-punctured spheres (tubes) and tori with flux is realized using duality domain walls in 5d $\mathcal{N}=1$ Kaluza-Klein (KK) theories, which are usually denoted by $flux$ $domain$ $walls$. We revisit this construction and study it in detail from the 5d perspective, specifically rephrasing it using the box graph description of the extended Coulomb branch phases of 5d theories. This perspective could be helpful in understanding how to equivalently realize the 4d $\mathcal{N}=1$ models from geometric engineering in M-theory. Along the way, we show how to recover various properties of the 4d theories from the 5d perspective, such as the flux associated to the domain wall configurations and the presence of a $\mathfrak{u}(1)$ global symmetry in the 4d theory descending from the KK symmetry on the tube, which is broken to a discrete subgroup on a flux torus. We demonstrate all of these ideas using the rank 1 E-string theory.