论文标题

图像质量评估:学习对图像失真级别进行排名

Image Quality Assessment: Learning to Rank Image Distortion Level

论文作者

Faigenbaum-Golovin, Shira, Shimshi, Or

论文摘要

多年来,开发了各种算法,试图模仿人类视觉系统(HVS)并评估感知图像质量。但是,对于某些图像扭曲,HV的功能仍然是一个谜,与其行为相呼应仍然是一个挑战(尤其是对于不确定的畸变)。在本文中,我们学会了相对于所选失真比较两个注册图像的图像质量。我们的方法利用了一个事实,有时,模拟图像失真并随后评估其相对图像质量比评估其绝对值要容易。因此,给定一对图像,我们寻找一个最佳的尺寸还原函数,将每个图像映射到数值分数,以便分数反映出图像质量关系(即,较小的图像将获得较低的分数)。我们以深层神经网络的形式寻找最佳的尺寸减少映射,该映射最大程度地减少了对图像质量顺序的侵犯。随后,我们通过利用所选失真的预测级别扩展了订购一组图像的方法。我们证明了我们方法对合成和真实数据集的潜在色差和Moire畸变的有效性。

Over the years, various algorithms were developed, attempting to imitate the Human Visual System (HVS), and evaluate the perceptual image quality. However, for certain image distortions, the functionality of the HVS continues to be an enigma, and echoing its behavior remains a challenge (especially for ill-defined distortions). In this paper, we learn to compare the image quality of two registered images, with respect to a chosen distortion. Our method takes advantage of the fact that at times, simulating image distortion and later evaluating its relative image quality, is easier than assessing its absolute value. Thus, given a pair of images, we look for an optimal dimensional reduction function that will map each image to a numerical score, so that the scores will reflect the image quality relation (i.e., a less distorted image will receive a lower score). We look for an optimal dimensional reduction mapping in the form of a Deep Neural Network which minimizes the violation of image quality order. Subsequently, we extend the method to order a set of images by utilizing the predicted level of the chosen distortion. We demonstrate the validity of our method on Latent Chromatic Aberration and Moire distortions, on synthetic and real datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源