论文标题
完全真实数字字段中完美的单一形式的类数量的上限
An Upper Bound on the Number of Classes of Perfect Unary Forms in Totally Real Number Fields
论文作者
论文摘要
令$ k $为$ \ m athbb {q} $的$ n $的完全实数字段,分别具有判别和调节器$Δ_K,r_k $。在本文中,使用与van Woerden类似的方法,我们证明,完美的一般形式的类别(最多与等效性和缩放)可以通过$ o(δ_k\ exp(2n \ log log(n)+f(n)+f(n,r_k))$,其中$ f(n,r_k)$是有限的,满足的值,满足$ f(n,r_k)= \ frac {\ sqrt {n-1}} {2} r_k^{\ frac {\ frac {1} {n-1}}}+\ frac {4} {n-1} {n-1} {n-1} {n-1} \ log(此外,如果$ k $是一个单位还原字段,那么完美的一单单表格的类数将在上面绑定为$ o(δ_k\ exp(2n \ log(n)))$。
Let $K$ be a totally real number field of degree $n$ over $\mathbb{Q}$, with discriminant and regulator $Δ_K, R_K$ respectively. In this paper, using a similar method to van Woerden, we prove that the number of classes of perfect unary forms, up to equivalence and scaling, can be bounded above by $O( Δ_K \exp(2n \log(n)+f(n,R_K)))$, where $f(n,R_K)$ is a finite value, satisfying $f(n,R_K)=\frac{\sqrt{n-1}}{2}R_K^{\frac{1}{n-1}}+\frac{4}{n-1}\log(\sqrt{|Δ_K|})^2$ if $n \leq 11$. Moreover, if $K$ is a unit reducible field, the number of classes of perfect unary forms is bound above by $O( Δ_K \exp(2n \log(n)))$.